初二数学上册第四章知识总结:整式的乘除与因式分解

所属专题:初二数学知识点  来源:沪江中学学科网    要点:初二数学知识点  
编辑点评: 熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。

一.定义

1.整式乘法

(1).am·an=am+n[m,n都是正整数]

同底数幂相乘,底数不变,指数相加.

(2).(am)n=amn[m,n都是正整数]

幂的乘方,底数不变,指数相乘.

(3).(ab)n=anbn[n为正整数]

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.

(4).ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7

单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

(5).m(a+b+c)=ma+mb+mc

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,

(6).(a+b)(m+n)=am+an+bm+bn

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.

2.乘法公式

(1).(a+b)(a-b)=a2-b2

平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.

(2).(a±b)2=a2±2ab+b2

完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.

3.整式除法

(1)am÷an=am-n[a≠0,m,n都是正整数,且m>n]

同底数幂相除,底数不变,指数相减.

(2)a0=1[a≠0]

任何不等于0的数的0次幂都等于1.

(3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

(4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

4.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

二.重点

1.(x+p)(x+q)=x2+(p+q)x+pq

2.x3-y3=(x-y)(x2+xy+y2)

3.因式分解两种基本方法:

(1)提公因式法.提取:数字是各项的最大公约数,各项都含的字母,指数是各项中最低的.

(2)公式法.

①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积

②a2±2ab+b2=(a±b)2两个数的平方和加上[或减去]这两个数的积的2倍,等于这两个数的和[或差]的平方.

>>点击查看初二数学知识点专题,阅读更多相关文章!

最新2020初二数学知识点信息由沪江中学学科网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: