【打印】
中考数学压轴题(2)
返回文章完整版式

(2011•河北)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点

为A (1,0),B (1,﹣5),D (4,0).

(1)求c,b (用含t的代数式表示):

(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

考点:二次函数综合题。

分析:(1)由抛物线y=x2+bx+c经过点O和点P,将点O与P的坐标代入方程即可求得c,b;

(2)①当x=1时,y=1﹣t,求得M的坐标,则可求得∠AMP的度数,

②由S=S四边形AMNP﹣S△PAM=S△DPN+S梯形NDAM﹣S△PAM,即可求得关于t的二次函数,列方程即可求得t的值;

(3)根据图形,即可直接求得答案.

解答:解:(1)把x=0,y=0代入y=x2+bx+c,得c=0,

再把x=t,y=0代入y=x2+bx,得t2+bt=0,

∵t>0,

∴b=﹣t;

点评:此题考查了二次函数与点的关系,以及三角形面积的求解方法等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与方程思想的应用.