初中数学知识点:一次函数与二元一次方程的关系

所属专题:初三数学知识点  来源:沪江中学学科网    要点:初三数学知识点  
编辑点评: 课堂学习是我们学好数学的一个关键步骤,课堂效率高的人,会学得很轻松。听课方面要求学生上课做到 “一专三动”,即专心听老师对重点难点的剖析,听例题解法及思路分析、技巧等;同时积极动脑、动手、动口参与教学活动。

  1.(1)以二元一次方程组ax+by=c的解为坐标的点组成的图像与一次函数

  y=-a/bx+c/b的图像相同.

  (2)二元一次方程组{a1x+b1y=c1,

  a2x+b2y=c2的解可以看作是两个一次函数

  y=-a1/b1x+c1/d1和y=-a2/b2x+c2/d2的图像的交点.

  方法小结:

  把方程组中的两个二元一次方程改写成一次函数的形式,然后作出它们的图像,找出两图像的交点,即可知方程组的解.

  一、区别和联系

  区别:二元一次方程有两个未知数,而一次函数只是说未知数的次数为一次,并未限定几个变量,因此二元一次方程只是一次函数中的一种。

  联系:(1)在平面直角坐标系中分别描绘出以二元一次方程的解为坐标的点,这些点都在相应的一次函数的图象上。如方程2x+y=5有无数组解,像x=1,y=3;x=2,y=1;…以这些解为坐标的点(1,3)(2,1)…都在一次函数y=-2x+5的图象上. (2)在一次函数图象上任取一点,它的坐标都适合相应的二元一次方程.如在一次函数y=-x+2的图象上任取一点(-3,3),则x=-3,y=3一定是二元一次方程x+y=2的一组解.

  所以,以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的。

  二、两个本函数图象交点与方程组解的联系

  在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解。反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点。

  三、方程组无解时相应函数图象的关系

  当二元一次方程组无解时,相应的两个一次函数在平面直角坐标系中的图象就没有交点,即两个一次函数图象平行。反过来,当两个一次函数图象平行时,相应的二元一次方程组就无解。如二元一次方程组3x-y=5,3x-y=-1无解,则一次函数y=3x-5与y=3x+1的图象平行,反之也成立。

  四、用作图的方法解二元一次方程组

  用作图的方法解二元一次方程组,一般有下列几个步骤:(1)将相应的二元一次方程改写成一次函数的解析式;(2)在同一平面直角坐标系内作出这两个一次函数的图象;(3)找出图象的交点坐标,即得二元一次方程组的解。

  五、用二元一次方程组确定本函数解析式

  在实际应用中,常常利用待定系数法构造二元一次方程组,从而确定一次函数的解析式。

  例:某航空公司规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(kg)的一次函数。现知王芳带了30 kg的行李,买了50元行李票。李刚带了40 kg的行李,买了100元行李票。那么,乘客最多可免费携带多少千克的行李?

  解答:依题意,可设一次函数的解析式为y=kx+b。则可得二元一次方程组50=30k+b,100=40k+b。解得k=5,b=-100,即一次函数的解析式是y=5x-100。当x=20时,y=0。所以乘客最多可免费携带20 kg的行李。

>>点击查看初三数学知识点专题,阅读更多相关文章!

最新2020初三数学知识点信息由沪江中学学科网提供。

请输入错误的描述和修改建议,建议采纳后可获得50沪元。

错误的描述:

修改的建议: