沪江中学题库 > 初中二年级 > 数学 > 有理数定义及分类 > 下列说法正确的是 [] A.有理数包括整数和分数B.符号不同的

练习题及答案

下列说法正确的是
[     ]
A.有理数包括整数和分数
B.符号不同的两个数互为相反数
C.有理数包括正数和负数
D.a的倒数是
题型:单选题难度:偏易来源:期中题

所属题型:单选题 试题难度系数:偏易

答案(找答案上“沪江中学题库”

A
下载

考点梳理

初中二年级数学试题“ 下列说法正确的是 [] A.有理数包括整数和分数B.符号不同的”旨在考查同学们对 有理数定义及分类 相反数 倒数 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初二数学

考点名称:有理数定义及分类

定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

概况:有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

有理数的计算法则

1)、有理数加法法则

1.同号两数相加,把绝对值相加,所得值符号不变。如-1+(-1)=-|1+1|=-2 、 1.1+1.1=2.2
2.异号两数相加,若绝对值不等,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。若绝对值相等即互为相反数的两个数相加得0。如-1+2=+|2-1|=1 、 2+(-3)=-|3-2|=-1 、-3.2+3.2=0
3.一个数同0相加,仍得这个数。3.14+0=3.14
注意:
一是确定结果的符号;二是求结果的绝对值。在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0。从而确定用那一条法则。在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了。多个有理数的加法,可以从左向右计算,也可以用加法的运算定律计算,但是在下笔前一定要思考好,哪一个要用定律哪一个要从左往右计算。

2)、有理数减法法则
减去一个数,等于加这个数的相反数。
两变:减法运算变加法运算,减数变成它的相反数做加数。一不变:被减数不变。可以表示成: a-b=a+(-b)。

3)、有理数乘法法则
1.两数相乘,同号为正,异号为负,并把绝对值相乘。
2.任何数同0相乘,都得0。
3.乘积为1的两个有理数互为倒数。
4.几个不是0的数相乘,负因数得个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
5.几个数相乘,如果其中有因数为0,那么积等于0。

4)、有理数除法则
1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
3.0除以任何一个不等于0的数,都得0。
注意:
0不能做除数。

5)混合运算
有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。

有理数的分类:
(1)按有理数的定义:
                              正整数 
                 整数{     零 
                              负整数
有理数{     
                            正分数 
                分数{
                            负分数
 

(2)按有理数的性质分类: 
                           正整数  
               正数{ 
                           正分数
有理数{  零
                           负整数 
               负数{
                           负分数

考点名称:相反数

相反数的定义:
只有符号不同的两个数叫做互为相反数,像2和-2,5和-5这样。
 
相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
 
相反数的意义:
1)、代数意义:
和是0的两个数互为相反数。0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
2)、几何意义
1、相反数的几何意义 在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
 
相反数的应用规则:
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,无理数也有相反数。
实数a相反数的相反数,就是a本身。
a-b和b-a是一对互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。

相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
相反数的判别:
我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。
多重符号的化简:
1、在一个数前面添加一个“+”好,所得的数与原数相同。
2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:倒数

倒数的定义:
是指数学上设一个数x与其相乘的积为1的数,记为1/x或x,过程为“乘法逆”,除了0以外的复数都存在倒数, 倒数图将其以1除,便可得到倒数。 两个数乘积是1的数互为倒数,0没有倒数。
倒数性质:
(1)若a、b互为倒数,则ab=1,或,反之也成立;
(2)0没有倒数;
(3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。
倒数的特点:
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
   b/a+(a-b)/a
=b×b/a×b+(a÷b-b×b)/ab
=(a×a-b×b+b×b)/ab
=a×a/a×b,
又因为a>b,
所以a·a>a·b,
所以a·a/a·b>1,
所以1+(a-b)/b+a·a/a·b>2,
所以一个正实数加上它的倒数一定大于2。
当b>a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。
倒数的求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4,所以0.25是4的倒数。也可以说4是0.25的倒数,也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使不完整用这种规律。

相关练习题推荐