沪江中学题库 > 初中一年级 > 数学 > 正数与负数 > 电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单

练习题及答案

电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3向右跳4个单位到K4…按以上规律跳了100步时,电子跳蚤落在数轴上点K100表示的实数为2008.电子跳蚤的初始位置K0表示的数是多少?
题型:解答题难度:中档来源:湖南省竞赛题

所属题型:解答题 试题难度系数:中档

答案(找答案上“沪江中学题库”

解:设电子跳蚤的初始位置K0表示的数是x,
则x﹣1+2﹣3+4﹣5+…+100=2008,
即x+50=2008,
解得:x=1958.
答:电子跳蚤的初始位置K0表示的数是1958.
下载

考点梳理

初中一年级数学试题“电子跳蚤落在数轴上(向右为正方向)上某点K.第一步从K0向左跳1个单”旨在考查同学们对 正数与负数 探索规律 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初一数学

考点名称:正数与负数

正数:比0大的数叫正数。正数前面常有一个符号“+”,通常可以省略不写。
就是大于0的(实数)
负数:指小于0的实数。一个负数总是某个正数的相反数。负数用负号“-”和一个正数标记,如−2,代表的就是2的相反数。於是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。最早记载负数的是我国古代的数学著作。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。

0既不是正数也不是负数。

非负数:正数与零的统称。
非正数:负数与零的统称。

正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。

2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。

考点名称:探索规律

探索规律的题目,通常按照一定的顺序给出一系列参数,要求我们根据这些已知的量找出规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
掌握探究的一般方法是解决此类问题的关键。
(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;
(2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。
 
探索规律题题型和解题思路:
1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;
探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。
2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;
探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;

探索结论型题的一般解题思路是:
(1)从特殊情形入手,发现一般性的结论;
(2)在一般的情况下,证明猜想的正确性;
(3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。
3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;
图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。
4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。
探索存在型题的结论只有两种可能:存在或不存在;

存在型问题的解题步骤是:
①假设存在;
②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。
解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。

相关练习题推荐