沪江中学题库 > 初中三年级 > 数学 > 数轴 > 如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设

练习题及答案

如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为
(1)求m的值;
(2)求的值
题型:解答题难度:中档来源:广东省中考真题

所属题型:解答题 试题难度系数:中档

答案(找答案上“沪江中学题库”

解:(1)由题意可得
(2)把m的值代入得: 


=
下载

考点梳理

初中三年级数学试题“如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设”旨在考查同学们对 数轴 绝对值 二次根式的加减乘除混合运算,二次根式的化简 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三数学

考点名称:数轴

数轴的定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

数轴的意义:
数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,右边的数总比左边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
二者不容混淆。
任何一个实数都可以用数轴上的一个点来表示。

用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。

数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

考点名称:绝对值

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。在数轴上,假设a>b,且a>0,b>0,那么表示数a的点到数b的点之间的距离的值,读做a-b的绝对值,记作 |a-b|。
绝对值的意义:
1、几何的意义:在数轴上,一个数到原点的距离叫做该数的绝对值。如:


2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

  二次根式:一般地,形如√ā(a≥0,a是被开方数)的代数式叫做二次根式,a≥0,√ā≥0 (双重非负性)。二次根式的加减乘除混合运算实际上就是进行不断地化简的过程,因此突破难点的关键不但是要熟练掌握相关的运算法则,还要搞清楚化简的最后方向是最简二次根式的形式,因此判断是否是最简二次根式应是本节教学另一个关注的内容。

  二次根式的加减法法则

  1、同类二次根式。一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

  2、合并同类二次根式。把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

  二次根式的乘除法法则

  1、积的算数平方根的性质,列如:√ab=√a·√b(a≥0,b≥0)

  2、乘法法则,列如:√a·√b=√ab(a≥0,b≥0),二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。

  3、除法法则,√a÷√b=√a÷b(a≥0,b>0),二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。

  4、有理化根式。如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。

  二次根式混合运算解题步骤

  1、确定运算顺序。

  2、灵活运用运算定律。

  3、正确使用乘法公式。

  4、大多数分母有理化要及时。

  5、在有些简便运算中也许可以约分,不要盲目有理化。

  6、字母运算时注意隐含条件和末尾括号的注明。

  7、提公因式时可以考虑提带根号的公因式。

  二次根式化简方法

  二次根式是中学代数的重要内容之一,而二次根式的化简是二次根式运算的基础,学好二次根式的化简是学好二次根式的关键。下面给同学们归纳总结了几种方法,帮助大家学好二次根。

  1、乘法公式法

  2、因式分解法

  3、整体代换法

  4、巧构常值代入法

相关练习题推荐