沪江中学题库 > 初中三年级 > 数学 > 数轴 > 如图,已知A、B、C三点分别对应数轴上的数a、b、c。(1)化简:|a-b

练习题及答案

如图,已知A、B、C三点分别对应数轴上的数a、b、c。
(1)化简:|a-b|+|c-b|+|c-a|;
(2)若a=x+y+1,b=-z2,c=-,且满足x与y互为相反数,z是绝对值最小的负整数,m、n互为倒数,试求98a+99b+100c的值;
(3)在(2)的条件下,在数轴上找一点D,满足D点表示的整数d到点A,C的距离之和为10,并求出所有这些整数的和;
(4)x是数轴上的一个数,试讨论:x为有理数时,|x+2|+|x-3|是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由;
(5)请直接写出S=|x-1|+|x-2|+|x-3|+|x-4|+…+|x-99|的最小值。

所属题型:解答题 试题难度系数:偏难

答案(找答案上“沪江中学题库”

解:(1)2a-2c;
(2)-501;
(3)3+(-7)=-4;
(4)最小值为5;
(5)2450。
下载

考点梳理

初中三年级数学试题“如图,已知A、B、C三点分别对应数轴上的数a、b、c。(1)化简:|a-b”旨在考查同学们对 数轴 相反数 绝对值 倒数 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三数学

考点名称:数轴

数轴的定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

数轴的意义:
数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,右边的数总比左边的数大。
3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
二者不容混淆。
任何一个实数都可以用数轴上的一个点来表示。

用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。

数轴的应用范畴:
符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

考点名称:相反数

相反数的定义:
只有符号不同的两个数叫做互为相反数,像2和-2,5和-5这样。
 
相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
 
相反数的意义:
1)、代数意义:
和是0的两个数互为相反数。0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
2)、几何意义
1、相反数的几何意义 在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
 
相反数的应用规则:
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,无理数也有相反数。
实数a相反数的相反数,就是a本身。
a-b和b-a是一对互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。

相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
相反数的判别:
我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。
多重符号的化简:
1、在一个数前面添加一个“+”好,所得的数与原数相同。
2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:绝对值

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。在数轴上,假设a>b,且a>0,b>0,那么表示数a的点到数b的点之间的距离的值,读做a-b的绝对值,记作 |a-b|。
绝对值的意义:
1、几何的意义:在数轴上,一个数到原点的距离叫做该数的绝对值。如:


2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:倒数

倒数的定义:
是指数学上设一个数x与其相乘的积为1的数,记为1/x或x,过程为“乘法逆”,除了0以外的复数都存在倒数, 倒数图将其以1除,便可得到倒数。 两个数乘积是1的数互为倒数,0没有倒数。
倒数性质:
(1)若a、b互为倒数,则ab=1,或,反之也成立;
(2)0没有倒数;
(3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。
倒数的特点:
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
   b/a+(a-b)/a
=b×b/a×b+(a÷b-b×b)/ab
=(a×a-b×b+b×b)/ab
=a×a/a×b,
又因为a>b,
所以a·a>a·b,
所以a·a/a·b>1,
所以1+(a-b)/b+a·a/a·b>2,
所以一个正实数加上它的倒数一定大于2。
当b>a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。
倒数的求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4,所以0.25是4的倒数。也可以说4是0.25的倒数,也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使不完整用这种规律。

相关练习题推荐