沪江中学题库 > 初中二年级 > 数学 > 相反数 > 下列各对数中:+(-3)与-3,+(+3)与-3,-|-3|与+(-3),|-(+3)|与

练习题及答案

下列各对数中:+(-3)与-3,+(+3)与-3,-|-3|与+(-3),|-(+3)|与+(+3),-(+3)与+(+3),+3与-3,互为相反数的有
[     ]
A.3对
B.4对
C.5对
D.6对
题型:单选题难度:偏易来源:江苏期末题

所属题型:单选题 试题难度系数:偏易

答案(找答案上“沪江中学题库”

A
下载

考点梳理

初中二年级数学试题“ 下列各对数中:+(-3)与-3,+(+3)与-3,-|-3|与+(-3),|-(+3)|与”旨在考查同学们对 相反数 正数与负数 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初二数学

考点名称:相反数

相反数的定义:
只有符号不同的两个数叫做互为相反数,像2和-2,5和-5这样。
 
相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
 
相反数的意义:
1)、代数意义:
和是0的两个数互为相反数。0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
2)、几何意义
1、相反数的几何意义 在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
 
相反数的应用规则:
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,无理数也有相反数。
实数a相反数的相反数,就是a本身。
a-b和b-a是一对互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。

相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
相反数的判别:
我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。
多重符号的化简:
1、在一个数前面添加一个“+”好,所得的数与原数相同。
2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:正数与负数

正数:比0大的数叫正数。正数前面常有一个符号“+”,通常可以省略不写。
就是大于0的(实数)
负数:指小于0的实数。一个负数总是某个正数的相反数。负数用负号“-”和一个正数标记,如−2,代表的就是2的相反数。於是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。最早记载负数的是我国古代的数学著作。在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。

0既不是正数也不是负数。

非负数:正数与零的统称。
非正数:负数与零的统称。

正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。

2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。

相关练习题推荐