练习题及答案

(    )。
题型:填空题难度:中档来源:期中题

所属题型:填空题 试题难度系数:中档

答案(找答案上“沪江中学题库”

下载

考点梳理

初中一年级数学试题“()。”旨在考查同学们对 绝对值 相反数 完全平方公式 分式的加减乘除混合运算及分式的化简 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初一数学

考点名称:绝对值

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。在数轴上,假设a>b,且a>0,b>0,那么表示数a的点到数b的点之间的距离的值,读做a-b的绝对值,记作 |a-b|。
绝对值的意义:
1、几何的意义:在数轴上,一个数到原点的距离叫做该数的绝对值。如:


2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:相反数

相反数的定义:
只有符号不同的两个数叫做互为相反数,像2和-2,5和-5这样。
 
相反数的特性:
1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。
 
相反数的意义:
1)、代数意义:
和是0的两个数互为相反数。0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
2)、几何意义
1、相反数的几何意义 在数轴上,到原点两边距离相等的两个点表示的两个数是互为相反数.
2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”;
 
相反数的应用规则:
正数的相反数是负数,负数的相反数就是正数。
0的相反数是0,无理数也有相反数。
实数a相反数的相反数,就是a本身。
a-b和b-a是一对互为相反数。
负数和0的绝对值是它的相反数。
虚数没有相反数。

相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
相反数的判别:
我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。
多重符号的化简:
1、在一个数前面添加一个“+”好,所得的数与原数相同。
2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:完全平方公式

  完全平方公式

  完全平方公式是进行代数运算与变形的重要知识基础。该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解 (如对公式中积的一次项系数的理解)。

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

完全平方公式

  理解公式左右边特征

  (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;

完全平方公式

  (二)学会用文字概述公式的含义:

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

完全平方公式

  都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

  (三)这两个公式的结构特征是:

  1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;

  2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);

  3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

  (四)两个公式的统一:

  因为

完全平方公式

  所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  完全平方公式的基本变形:

  (一)变符号

  例:运用完全平方公式计算:

  (1)(-4x+3y)²

  (2)(-a-b)²

  分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。

  解答:

  (1)16x²-24xy+9y²

  (2)a²+2ab+b²

  (二)变项数:

  例:计算:(3a+2b+c)²

  分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)²可先变形为[(3a+2b)+c]²,直接套用公式计算。

  解答:9a²+12ab+6ac+4b²+4bc+c²

  (三)变结构:

  例:运用公式计算:

  (1)(x+y)(2x+2y)

  (2)(a+b)(-a-b)

  (3)(a-b)(b-a)

  分析:本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即

  (1)(x+y)(2x+2y)=2(x+y)²

  (2) (a+b)(-a-b)=-(a+b)²

  (3) (a-b)(b-a)=-(a-b)²

  分式加减乘除混合运算:分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的,也可以把除法转化为乘法,再运用乘法运算。

  分式化简:在数学上,化简是十分重要的概念,一些复杂难辨的式子,很多时候需要依靠化简才能更简单快速地对它们求值成功,所以一般把复杂式子化为简单式子的过程叫分式化简。分式化简包括移项,合并同类项,去括号等,化简后的式子一般为最简式子,项数减少。解方程,也可以看作是一个化简的过程,借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  分式加减乘除混合运算法则

  (1)分式的乘除法法则

分式的加减乘除混合运算

  当分子、分母是多项式时,先进行因式分解再约分。

  (2)分式的加减法法则

  通分的根据是分式的基本性质,且取各分式分母的最简公分母。

  求最简公分母是通分的关键,它的法则是:

  ①取各分母系数的最小公倍数;

  ②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;

  ③相同字母(或含有字母的式子)的幂的因式取指数最高的。

  (3)同分母的分式加减法法则 

分式的加减乘除混合运算

  异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。

  分式加减乘除运算解题技巧

  分式运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。学习时应注意以下几个问题及相关技巧:

  (1)注意运算顺序及解题步骤,把好符号关;

  (2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;

  (3)运算中及时约分、化简;

  (4)注意运算律的正确使用;

  (5)结果应为最简分式或整式。

  分式化简常见题型及应对技巧

  (1)把假分式化成整式和真分式之和

  化简求值技巧:遇到这种题型不要直接通分计算,因为过于繁琐。可以将每个假分式化成整式和真分式之和的形式,之后再进行化简求和将会简便很多。

  说明:是否能正确地将假分式写成整式与真分式之和的形式是本题的关键所在。教师在对这种类型题目进行讲解过程中,首先可以引导学生直接进行通分计算试一下,学生很快就会发现直接通分,几乎上就是无从下手,然后再让学生对各个分式进行变形,化成整式和真分式之和,即可继续进行化简。这样学生在一拿到题目的时候,就不会先盲目的进行通分,就会先想一下有没有简便的方法,促使学生去学习一定的解题技巧。这一类型题目在解析过程中,所使用的是逆向思维,其也被称为是求异思维,简单来说,就是已经司空见惯的、形成一定定论的事物或者是观点,从其相反方面进行思考的一种思维方式。

  (2)对平方差公式进行使用

  化简求值技巧:直接通分比较麻烦,先化简再求值的过程中注意平方差公式:(a+b)(a-b)=a²-b²。教师在讲题过程中,可以先让学生对平方差公式进行复习,然后在引导学生对公式和题目进行分析,尝试着自己进行解题,最后再由老师对这种类型题目的特点以及解题方法进行讲解。这样不但可以让学生复习一次平方差公式,还可以加深学生对这类题型的记忆。

  可以通过分步通分的方式对其通分,每一步只用对左边两项进行通分。

  (3)巧妙使用“拆项消分”法

  化简求值技巧:教师在进行讲题过程中,首先要引导学生注意观察其规律,每个分式都具有的一般形式,解题时可以将其拆成两项,这样前后就可以有两个分式以相反数的形式被消掉,这种化简的方法就是“拆项消分”法,也是中学数学中化简比较常用的技巧。

  (4)利用整体代入法

  化简求值技巧:将x= 适当变形,化简分式后再求值,可以采取整体代入法,会使问题的求解过程简化很多。关于这种类型题目的讲解,则主要就是让学生对其题目中的条件和题目进行观察,让学生尝试不同的方式对其进行变形。

  关于初中数学分式化简求值的题型还有很多,本文主要列举了其中最为常见的类型及相应的化简求值技巧。学生在做题时必须要认真审题,根据不同类型的题型选择不同的解题方法和技巧,这样才能更快地提高解题的效率和正确率。同时在平常练习中,也要自己对解题技巧进行一定的总结。

相关练习题推荐