沪江中学题库 > 初中一年级 > 数学 > 绝对值 > 化简①-|-5|;②-[-(-5)];③;④-(-2)3.

练习题及答案

化简 ①-|-5|;
②-[-(-5)];

④-(-2)3
题型:计算题难度:中档来源:云南省月考题

所属题型:计算题 试题难度系数:中档

答案(找答案上“沪江中学题库”

解:①﹣|﹣5|=﹣5;
②﹣[﹣(﹣5)]=﹣(+5)=﹣5;
=
④﹣(﹣2)3=﹣(﹣8)=8.
下载

考点梳理

初中一年级数学试题“化简①-|-5|;②-[-(-5)];③;④-(-2)3.”旨在考查同学们对 绝对值 有理数除法 有理数的乘方 去括号与添括号 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初一数学

考点名称:绝对值

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,绝对值用“ | |”来表示。在数轴上,假设a>b,且a>0,b>0,那么表示数a的点到数b的点之间的距离的值,读做a-b的绝对值,记作 |a-b|。
绝对值的意义:
1、几何的意义:在数轴上,一个数到原点的距离叫做该数的绝对值。如:


2、代数的意义:
非负数(正数和0,)
非负数的绝对值是它本身,非正数的绝对值是它的相反数。
互为相反数的两个数的绝对值相等。
a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。
互为相反数的两个数的绝对值相等,即|-a|=|a|。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

考点名称:有理数除法

有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。
 
有理数的除法法则:
法则一、除以一个不等于0的数等于乘以这个数的倒数。(注意:0没有倒数)
法则二、两数相除,同号得正,异号得负,并把绝对值相除。(0除以任何一个非0的数,都得0)
 
有理数除法注意事项:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
 
有理数除法经验汇总:
(1)0除以任何一个不等于0的数,都等于0。
(2)0在任何条件下都不能做除数。
(3)0没有倒数。
(4)倒数是它本身的数是1和-1。
(5)同号得正,异号得负。
(6)除以一个数等于乘以这个数的倒数
 
有理数除法步骤:
1、两个有理数相除时,首先确定商的符号,其次确定商的绝对值。
2、有理数除法运算的步骤:(1)“÷”改为“×”,除数变倒数;(2)乘法运算

考点名称:有理数的乘方

有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何正整数次幂都得0.
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
知识点点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:
 

考点名称:去括号与添括号

去括号:即是按一定运算法则和顺序对算式进行脱括号的计算;
添括号:即是按一定运算法则和顺序对算式进行添加括号的计算。

变号与不变号:
去括号、添括号都存在一个“变号”与“不变号”的问题。正确的掌握“变号”与“不变号”是较难之处,添括号时这个难点更明显(易错)。这些2.问题的关键是括号前的符号问题。
a.若括号前面是“+”号,就出现“不变”之说,即去括号时,把括号里的各项“不变号”从括号里“解放”出来;
b.添括号时,括号前添的是“+”号,被括起来的各项,也“不变号”进入括号就行了;
c.若括号前面是“-”号,不论是去括号或是添括号,都会遇到“改变符号”的问题的。另外,不论是去或添括号,括号前面的符号和括号是一个整体,不能分割开来,顾此失彼。
还有“变号”与“不变号”中都提到“各项”,要认真对待,不能只“变”或“不变”其中的一部分。

去括号法则
1.括号前是"+"号,把括号和它前面的"+"号去掉后,原括号里各项的符号都不改变。
2.括号前是"-"号,把括号和它前面的"-"号去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号,例:-(x-y)=-x+y
注意问题
1、 要注意括号前面的符号,它是在去括号时括号内各项是否变号的依据.
2、 去括号时要将括号前的符号连同括号一起去掉.
3、 要注意,括号前面是减号时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.
4、 若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.
5、 遇到多层括号一般由里到外,逐层去括号,也可由外到里。
6、 乘除法去括号法则的依据实际是乘法分配律中的一种。
例:先去括号,再合并同类项
(1)5a-(2a-4b)
=5a-2a+4b
=3a+4b
(2)2x×2+3(2x-2)
=2x×2+6x-3x×2
= -2+6x

例:先去括号,再合并同类项
(1)a-(2a-b)-(a+2b)
=a-2a+b-a-2b
=-2a-b
(2)(x×2-y×2)-4(2x×2-3y)
=x×2-y×2-16x+12y
=-14x+10y

2(5a×2-2ab)-3(3a×2+4ab-b×2)
=20a-4ab-18a-12ab+6b
=2a-16ab+6b

添括号法则
1.如果括号前面是加号或乘号,加上括号后,括号里面的符号不变。
2.如果括号前面是减号或除号,加上括号后,括号里面的符号全部改为与其相反的符号。
3.添括号可以用去括号进行检验。
字母公式:
1.a+b+c=a+(b+c);
2.a-b-c=a-(b+c)
例:
(x+2y-3)(x-2y+3)
=[x+(2y-3)][x-(2y-3)]
=x2-(2y-3)2
=x2-(4y2-12y+9)
=x2-4y2+12y-9

(a+b+c)2
=[(a+b)+c]2
=(a+b)2+2(a+b)c+c2
=a2+2ab+b2+2ac+2bc+c2
= a2+B2+c2+2ab+2ac+2bc

相关练习题推荐