沪江中学题库 > 初中三年级 > 数学 > 有理数的乘方 > 下列运算中正确的是( )A.5+6=11B.(a+3)2=a2+9C.5a2+3a2=8a4D.(a

练习题及答案

下列运算中正确的是(  )
A.
5
+
6
=
11
B.(a+3)2=a2+9
C.5a2+3a2=8a4D.(a52=a10

所属题型:单选题 试题难度系数:中档

答案(找答案上“沪江中学题库”

A.
5
+
6
=
11
B.(a+3)2=a2+9
C.5a2+3a2=8a4D.(a52=a10
下载

考点梳理

初中三年级数学试题“下列运算中正确的是( )A.5+6=11B.(a+3)2=a2+9C.5a2+3a2=8a4D.(a”旨在考查同学们对 有理数的乘方 同类项 完全平方公式 二次根式的加减 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三数学

考点名称:有理数的乘方

有理数乘方的定义:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。
乘方的性质:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何正整数次幂都得0.
有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
知识点点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。
乘方示意图:
 

考点名称:同类项

同类项:
所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
像4y与5y,100ab与14ab这样,所含字母相同,并且相同字母的次项的指数也相同的项叫做同类项,所有常数项都是同类项。(常数项也叫数字因数)
在求代数式的值时,常常先合并同类项,化简代数式后再求值,这样比较简便。

同类项性质:
(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;
(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;
(3)所有的常数项都是同类项。
例如:
1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项
-24ab与152ab是同类项 【同类项与字母前的系数大小无关】
2. -7和29也是同类项【所有常数项都是同类项。】
3. -a和a也是同类项【-a的系数是-1 a的系数是1 】
4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】
5.(3+k)与(3—k)是同类项。

合并同类项:
多项式中的同类项可以合并,叫做合并同类项。
合并同类项步骤:
(1)准确的找出同类项。
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
(3)写出合并后的结果。

在掌握合并同类项时注意:
1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
2.不要漏掉不能合并的项。
3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
合并同类项的关键:正确判断同类项。

多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

合并同类项的理论依据:
其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
 

考点名称:完全平方公式

  完全平方公式

  完全平方公式是进行代数运算与变形的重要知识基础。该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解 (如对公式中积的一次项系数的理解)。

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

完全平方公式

  理解公式左右边特征

  (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;

完全平方公式

  (二)学会用文字概述公式的含义:

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

完全平方公式

  都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

  (三)这两个公式的结构特征是:

  1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;

  2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);

  3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

  (四)两个公式的统一:

  因为

完全平方公式

  所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  完全平方公式的基本变形:

  (一)变符号

  例:运用完全平方公式计算:

  (1)(-4x+3y)²

  (2)(-a-b)²

  分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。

  解答:

  (1)16x²-24xy+9y²

  (2)a²+2ab+b²

  (二)变项数:

  例:计算:(3a+2b+c)²

  分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)²可先变形为[(3a+2b)+c]²,直接套用公式计算。

  解答:9a²+12ab+6ac+4b²+4bc+c²

  (三)变结构:

  例:运用公式计算:

  (1)(x+y)(2x+2y)

  (2)(a+b)(-a-b)

  (3)(a-b)(b-a)

  分析:本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即

  (1)(x+y)(2x+2y)=2(x+y)²

  (2) (a+b)(-a-b)=-(a+b)²

  (3) (a-b)(b-a)=-(a-b)²

考点名称:二次根式的加减

  二次根式的加减法法则

  1、同类二次根式。一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

  2、合并同类二次根式。把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

  二次根式的加减法运算技巧

  二次根式的加减法首先是化简,在化简之后,就是类似整式加减的运算了.整式加减无非是去括号与合并同类项,二次根式的加减在化简之后也是如此,同类二次根式类似同类项.但是初次接触二次根式的加减法,在运算过程中容易出现各种各样的错误,因此熟练掌握二次根式的加减法运算是本节的难点.

  本节的主要内容是讲解二次根式的加减法,而二次根式的加减法的关键是把二次根式化为最简二次根式,再把同类二次根式合并.

  (1)在知识引入的讲解中,有两种不同的处理方法:一是按照教材中的方法,先给出几个二次根式,把他们都化成最简二次根式,在进行比较或者加减运算,从而引出二次根式的加减法和同类二次根式;二是先复习同类项的概念或进行一两道简单的正式加减的题目,通过类比引出同类二次根式和二次根式的加减法.两种处理方法各有优劣,可根据实际情况进行选择,当然也可以把这两种方法综合应用,但有些过繁.

  (2)根据情况进行细分处理,例如分成几个小问题:①把被开方数都是整数的放在一个小题中,②把被开方数都是分数的放在一个小题中,③把被开方数带有简单字母的放在一个小题中,④把字母次数略高于2的放在一个小题中,……使问题的解决有一个由浅入深的渐进过程,便于获得成就感.

  (3)在进行二次根式的加减法中,同样将例题细分成几个层次进行学习,例如:①不需要化简能直接进行相加减的,②需要化简但被开方数都是简单整数的,③被开方数都是有理数但既有整数又有分数的,④被开方数含有字母的,等等.

  (4)在二次根式加减法中,虽然教材已经不要求二次根式加减法的法则,但可以自己总结法则,既有利于提高学习兴趣,又能提高观察、分析和归纳能力.

  (5)在二次根式加减法中,也有很多容易犯错的地方,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况。

相关练习题推荐