沪江中学题库 > 初中二年级 > 数学 > 探索规律 > (1)图(1)是正方体木块,把它切去一块,可能得到形如图(2)、(3)、

练习题及答案

(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2)、(3)、(4)、(5)的木块.

魔方格

我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入下表:
顶点数 棱数 面数
(1) 8 12 6
(2)
(3)
(4)
(5)
(2)观察上表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:______.

所属题型:解答题 试题难度系数:中档

答案(找答案上“沪江中学题库”

顶点数 棱数 面数
(1) 8 12 6
(2)
(3)
(4)
(5)
下载

考点梳理

初中二年级数学试题“(1)图(1)是正方体木块,把它切去一块,可能得到形如图(2)、(3)、”旨在考查同学们对 探索规律 认识立体几何图形 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初二数学

考点名称:探索规律

探索规律的题目,通常按照一定的顺序给出一系列参数,要求我们根据这些已知的量找出规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
掌握探究的一般方法是解决此类问题的关键。
(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;
(2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。
 
探索规律题题型和解题思路:
1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;
探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。
2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;
探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;

探索结论型题的一般解题思路是:
(1)从特殊情形入手,发现一般性的结论;
(2)在一般的情况下,证明猜想的正确性;
(3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。
3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;
图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。
4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。
探索存在型题的结论只有两种可能:存在或不存在;

存在型问题的解题步骤是:
①假设存在;
②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。
解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。

考点名称:认识立体几何图形

立体几何图形:

从实物中抽象出来的各种图形,如点、线、面、体这些可帮助人们有效的刻画错综复杂世界的图形,我们都称为几何图形。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形,由一个或多个面围成的可以存在于现实生活中的三维图形,如柱体(包括圆柱和棱柱)、锥体(包括圆锥体和棱锥体)、旋转体(包括圆柱、圆台、圆锥、球、扇环等)。

常见立体几何图形及性质:

①正方体:

有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)

②长方体:

有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。

③圆柱:

上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。

④圆锥:

有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。

⑤直三棱柱:

三条侧棱切平行,上表面和下表面是平行且全等的三角形。

⑥球:

球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。

立体几何图形常考知识点总结

1.直线在平面内的判定

2.存在性和唯一性定理

3.射影及有关性质

4.空间中的各种角:等角定理及其推论、异面直线所成的角

5.直线和平面所成的角

6.二面角及二面角的平面角

7.空间的各种距离

8.直线和平面的距离

9.平行平面的距离

10.异面直线的距离

相关练习题推荐