沪江中学题库 > 初中三年级 > 数学 > 一元一次不等式组的解法 > 解不等式组,并把它的解集表示在数轴上:2(x+2)≤x+3x3<x+14.

练习题及答案

解不等式组,并把它的解集表示在数轴上:
2(x+2)≤x+3
x
3
x+1
4

所属题型:解答题 试题难度系数:中档

答案(找答案上“沪江中学题库”

2(x+2)≤x+3
x
3
x+1
4

解不等式①,得
x≤1,
解不等式②,得
x<3,
所以不等式组的解集是
x≤1.
不等式的解集在数轴上表示为:

魔方格
下载

考点梳理

初中三年级数学试题“解不等式组,并把它的解集表示在数轴上:2(x+2)≤x+3x3<x+14.”旨在考查同学们对 一元一次不等式组的解法 不等式待定系数的取值范围 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三数学

小编提示,一元一次不等式组是在一元一次等式组的基础上拓展的内容,此知识点的学习建议在数轴的基础上加以理解。

重点:一元一次不等式组的解法,求公共解集的方法;
难点:1、含有字母系数的不等式组的解集的讨论;2、一元一次不等式组与二元一次方程组的综合问题。

一元一次不等式组的定义:
由含有同一未知数的多个一元一次不等式组合在一起,叫做一元一次不等式组。
一元一次不等式组的解法:
首先把每一个不等式的解集求出来,再求它们的公共部分,便得到不等式组的解集. 若是没有公共部分,这个一元一次不等式组就无解。
例如:

1、不等式x-5≤-1的解集为x≤4;

2、不等式x﹥0的解集是所有非零实数。

解法:求不等式组的解集的过程,叫做解不等式组。

求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

一元一次不等式组的解答步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

解法诀窍:
同大取大 ;
例如:
X>-1
X>2
不等式组的解集是X>2

同小取小;
例如:
X<-4
X<-6
不等式组的解集是X<-6

大小小大中间找;
例如,
x<2,x>1,不等式组的解集是1<x<2

大大小小不用找
例如,
x<2,x>3,不等式组无解

不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围。

不等式待定系数的取值范围求法:
一、根据不等式(组)的解集确定字母取值范围  
例:
如果关于x的不等式(a+1)x>2a+2.的解集为x<2,则a的取值范围是    (    )
    A.a<0  B.a<一l   C.a>l  D.a>一l
解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B.

二、根据不等式组的整数解情况确定字母的取值范围
例:
已知不等式组的整数解只有5、6。求a和b的范围.
解:解不等式组得,借助于数轴,如图:

知: 2+a只能在4与5之间。只能在6与7之间.
∴4≤2+a<5,6<≤7
∴2≤a<3,13<b≤15


三、根据含未知数的代数式的符号确定字母的取值范围
例:
已知2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
解:由2a-3x+1=0,可得a= ;由3b-2x-16=0,可得b= .
又a≤4<b,
所以,  ≤4<
解得:-2<x≤3.

四、逆用不等式组解集求解
例:

相关练习题推荐