沪江中学题库 > 初中一年级 > 数学 > 合并同类项 > 下列运算中,正确的是[]A.3a+2b=5abB.(a﹣1)2=a2﹣2a+1C.a6÷a3=a2D

练习题及答案

下列运算中,正确的是
[     ]
A.3a+2b=5ab
B.(a﹣1)2=a2﹣2a+1
C.a6÷a3=a2
D.(a45=a9
题型:单选题难度:中档来源:辽宁省月考题

所属题型:单选题 试题难度系数:中档

答案(找答案上“沪江中学题库”

B
下载

考点梳理

初中一年级数学试题“下列运算中,正确的是[]A.3a+2b=5abB.(a﹣1)2=a2﹣2a+1C.a6÷a3=a2D”旨在考查同学们对 合并同类项 整式的乘法 整式的除法 完全平方公式 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初一数学

考点名称:合并同类项

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
合并同类项就是逆用乘法分配律。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
 
说明
1、如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与m2n都是同类项。特别地,所有的常数项也都是同类项。
2、把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3、合并同类项的理论依据
其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。
 
合并同类项的步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
 
例题:
【例1】合并同类项-8ab+6ab-3ab
分析 同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。
解答 原式=(-8+6-3)ab=-5 ab。
【例2】合并同类项
-xy+3-2xy+5xy-4xy-7
分析 在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。
解答 原式=(-xy+5xy)+(-2xy-4xy)+(3-7)
=-2xy-4

考点名称:整式的乘法

整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(amn=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2

整式乘法运算:
单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
④.单项式乘法法则对于三个以上的单项式相乘同样适用.
⑤.单项式乘以单项式,结果仍是一个单项式.

单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。

考点名称:整式的除法

整式的除法:
1、单项式的除法
单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2、多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式除以多项式,用多项式先除以单项式的每一项,再将所得的商相加,合并同类项后取倒数。注意:是整个多项式取倒数,而不是每一项分别取倒数后合并。
整式的除法法则:
1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: (a≠0,m、n为正整数,并且m>n)
2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
 
整式的除法运算:
1、单项式÷单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。
2、多项式÷单项式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。
3、多项式÷单项式
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

考点名称:完全平方公式

  完全平方公式

  完全平方公式是进行代数运算与变形的重要知识基础。该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解 (如对公式中积的一次项系数的理解)。

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。

完全平方公式

  理解公式左右边特征

  (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;

完全平方公式

  (二)学会用文字概述公式的含义:

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

完全平方公式

  都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

  (三)这两个公式的结构特征是:

  1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;

  2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);

  3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

  (四)两个公式的统一:

  因为

完全平方公式

  所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。

  完全平方公式的基本变形:

  (一)变符号

  例:运用完全平方公式计算:

  (1)(-4x+3y)²

  (2)(-a-b)²

  分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。

  解答:

  (1)16x²-24xy+9y²

  (2)a²+2ab+b²

  (二)变项数:

  例:计算:(3a+2b+c)²

  分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)²可先变形为[(3a+2b)+c]²,直接套用公式计算。

  解答:9a²+12ab+6ac+4b²+4bc+c²

  (三)变结构:

  例:运用公式计算:

  (1)(x+y)(2x+2y)

  (2)(a+b)(-a-b)

  (3)(a-b)(b-a)

  分析:本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即

  (1)(x+y)(2x+2y)=2(x+y)²

  (2) (a+b)(-a-b)=-(a+b)²

  (3) (a-b)(b-a)=-(a-b)²

相关练习题推荐