沪江中学题库 > 初中三年级 > 数学 > 等边三角形 > 如图,正三角形ABC内接于圆O,P是BC所对劣弧上一点,求证:PA=PB+

练习题及答案

如图,正三角形ABC内接于圆O,P是BC所对劣弧上一点,求证:PA=PB+PC.
魔方格

所属题型:解答题 试题难度系数:中档

答案(找答案上“沪江中学题库”


魔方格
证明:证法1:以A为顶点,将△ABP旋转至点B与点C重合,如图所示:
根据旋转的性质知,PA=AD;△BAP≌△CAD,
∴CD=PB,
∵内接四边形的对角和为180°,
∴∠PCD=∠ACP+∠ACD=∠ACP+∠ABP=180°,
∴PA=PB+PC.

证法2:在AP上截取PQ,使PQ=PC.以A为顶点,作AD=AP,连接CD.如图所示:
∵∠PAB+∠PAC=∠DAC+∠PAC,
∴∠BAC=∠PAD,
又∵AD=AP,AB=AC,
∴△APD△ABC,
∴△PAD是等边三角形.
∴∠APD=60°,
则△PCQ是正三角形,
∴QC=PC=QP,
∴△BPC≌△AQC,
则BP=AQ,
∴PA=PB+PC.
下载

考点梳理

初中三年级数学试题“如图,正三角形ABC内接于圆O,P是BC所对劣弧上一点,求证:PA=PB+”旨在考查同学们对 等边三角形 图形旋转 ……等知识点的掌握情况,关于数学的核心考点解析如下:

此练习题为精华试题,现在没时间做?添加到收藏夹,以后再看。

根据试题考点,只列出了部分最相关的知识点,更多知识点请访问初三数学

考点名称:等边三角形

等边三角形定义
等边三角形(又称正三角形),为三边相等的三角形。其三个內角相等,均为60°。它是锐角三角形的一种。
等边三角形判定:
满足其中任意一条即满足另一条,即为正三角形(又名等边三角形):
1.三边长度相等
2.三角度数为60度
3.有一个角是60度的等腰三角形是等边三角形

等边三角形性质:

如右图所示,等边三角形外接圆
h=a sin60°=1/2 √3a
r=1/2 a cot(π/3)=1/2 a tan(π/6)=1/6 √3a
R=1/2 a csc(π/3)=1/2 a sec(π/6)=1/3 √3a
S=1/4 na² cot(π/3)=1/4 √3a²
Sr= πr²=1/12πa²
SR=πR² =1/3πa²
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)


等边三角形相关:
首先明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角等于60°的等腰三角形是等边三角形

等边三角形的中心:等边三角形重心、内心 、外心、垂心重合。
等边三角形三心合一:等边三角形中心、内心和垂心重合于一点。
等边三角形三线合一等边三角形的每条边上的中线、高或对角平分线重合。 

考点名称:图形旋转

圆形的旋转定义:
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

图形旋转性质:
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
旋转对称中心
把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)

圆的面积公式:
把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是s=ab,那圆的面积就是:圆的半径(r)的平方乘以π,S=πr²。

圆的周长公式:
学过π等于圆周长(c):圆的直径(D),圆的半径(R)那圆的周长(c)除以圆的直径(R)等于π,那利用乘法的意义,就等于 π乘以圆的直径(R)等于圆的周长(C),C=πd。而同园的直径(R)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。

圆的表面积:

圆的切线的性质:
圆的切线的性质定理:圆的切线垂直于经过切点的半径。
推论1、经过圆心且垂直于切线的直线必经过切点;
推论2、经过切点且垂直于切线的直线必经过圆心。
圆的切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

相关练习题推荐